English

技术服务

  • Q 为什么说主冷液氧面的变化是判断制氧机冷量是否充足的主要标志

    A
           空分设备的工况稳定时,装置的产冷量与冷量消耗保持平衡,装置内各部位的温度、压力、液面等参数不再随时间而变化。主冷是联系上、下塔的纽带,来自下塔的上升氮气在主冷中放热冷凝,来自上塔的回流液氧在主冷中吸热蒸发。回流液量与蒸发量相等时,液面保持不变。
     
           加工空气在进入下塔时,有一定的“含湿”,即有小部分是液体。大部分空气将在主冷中液化。对于低压空分设备,进下塔的空气是由出主热交换器冷端的空气和经液化器的空气混合而成的;对于中压空分设备,是由膨胀空气和出换热器后经节-1阀节流降压的空气混合而成的。在正常情况下,它们进塔的综合状态都有一定的“含湿量”(液化率)。进塔的空气状态是由空分设备内的热交换系统和产冷系统所保证的。
     
           当装置的冷损增大时,制冷量不足,使得进下塔的空气含湿量减小,要求在主冷中冷凝的氮气量增加,主冷的热负荷增大,相应地液氧蒸发量也增大,液氧面下降;如果制冷量过多,例如中压装置的工作压力过高时,空气进下塔的含湿量增大,主冷的热负荷减小,液氧蒸发量减少,液氧面会上升。因此,装置的冷量是否平衡,首先在主冷液面的变化上反映出来。
     
           当然,主冷液氧面是冷量是否平衡的主要标志,并不是惟一标志。因为液空节流阀等的开度过大或过小,会改变下塔的液面,进而影响主冷的液氧面的变化。但是,这不是冷量不平衡造成的,而是上、下塔的液量分配不当引起的,液面的波动也是暂时的。
  • Q 膨胀机制冷量的大小与哪些因素有关

    A
    膨胀机总制冷量Qp(kJ/h)与膨胀量V(m3/h)、单位制冷量Ah(kJ/kmol)有关:
     
           Qp=V△h/22.4=VAht·ηp/22.4
     
           式中的单位制冷量△^等于单位理论制冷量△ht与膨胀机效率ηp的乘积。而单位理论制冷量取决于膨胀前的压力、温度和膨胀后的压力。因此,膨胀机的制冷量与各因素的关系为:

           1)膨胀量越大,总制冷量也越大。但是,对于低压空分设备,膨胀空气直接送入上塔参与精馏,过多的膨胀空气量会影响精馏效果。这是分离过程所不希望的。
     
           2)进、出口压力一定时,机前温度越高,单位制冷量越大。例如。当膨胀机前的绝对压力为0.55MPa,机后压力为0.135MPa时,不同的机前温度下的单位理论制冷量如表13所示:
     
           表13 膨胀机前温度对单位制冷量的影响
     
     
     
           膨胀机前温度T1/K
     
           303  273  243  213  183  163  143
     
           单位理论制冷量△ht/kJ·kmol-1
     
           2850  2470  2300  2010  1720  1510  1300
     
           但是,机前温度提高,膨胀后的温度也会提高,气体直接进入上塔会破坏精馏工况。在正常生产时,温度提高幅度是有限制的。
     
           3)当机前温度和机后压力一定时,机前压力越高,单位制冷量越大。例如,当膨胀机的进口温度为160K,出口绝对压力为0.135MPa时,不同进口压力下的单位理论制冷量如表14所示。
     
           表14膨胀机前压力对单位制冷量的影响
     
           膨胀机前压力p1/MPa
     
           1.0  0.9  0.8  0.7  0.6
     
           单位理论制冷量△ht/kJ·kmol-1
     
           1970  1890  1800  1605  1570
     
           对于低压空分设备,原先流程的膨胀机进口压力取决于下塔压力,即接近空压机出口压力。采用增压透平流程后,利用膨胀机对外作功来带动增压机,压缩来自空压机的膨胀空气,可将膨胀机的进口压力提高到1.0MPa左右,增大了单位制冷量。在所需的总制冷量一定的情况下,就可以减少膨胀空气量,有利于上塔的精馏。
     
           4)膨胀机后压力越低,膨胀机内的压降越大,单位制冷量越大。但是,由于膨胀后气体进精馏塔,压力变化的余地不大。
     
           5)膨胀机绝热效率越高,制冷量越大。
  • Q 空分制冷的几种方式

    A
           制冷就是要从比环境温度低的装置内取走热量,以平衡由外部传入的热量,使装置保持低温状态,或使内部温度不断降低,直至不断积累起低温液体。
     
           热量只能从高温物体传给低温物体,要从低温物体取走热,首先要用人工的方法,造成一个更低温度的状态,使它具有吸收、并带走热量的能力。理论上讲,制冷量就是指这个带走热量能力的大小。根据制冷造成低温的方式不同,制冷量可分为以下三种。
     
    (1)节流效应制冷量
     
           进入空分装置压力较高的空气,在装置内经过节流阀及管路、设备等压力降低而膨胀。通常,节流过程将造成温度降低,气体所具有的带走热量的能力,就是低压气体在离开装置时恢复到进口温度相同时所能带走的热量。这说明,在同样的温度下,压力高的气体具有的能量(焓)比低压时要小,二者能量(焓)的差值就是所能吸收的热量,即叫做节流效应制冷量。
     
    (2)膨胀机制冷量
     
           压力较高的气体经过膨胀机膨胀时,由于气体推动叶轮旋转,对外输出功,因而气体本身的能量(焓)减小,温度显著降低。它所具有的带走热量的能力,就是吸热后恢复到膨胀前的能量。因此,膨胀机膨胀前后的能量(焓)之差就是膨胀机制冷量。
     
    (3)冷冻机提供的制冷量
     
           采用分子筛净化的空分设备,往往用冷冻机的低温工质来预冷空气,以提高吸附净化效果。这是由空分设备外部提供的制冷量,就是指冷冻水从空气带走的热量,它可使所需的节流效应和膨胀机制冷量减少。
     
           制冷量与冷量两个概念有区别又有联系。制冷量是装置的属性,冷量是物质的属性。通过制冷机(包括空分设备的空气压缩、膨胀)制冷,能使物质温度降低;物质在温度降低后具有了吸热的能力,即通过装置制冷,使物质具有了冷量。
  • Q 压缩机知识汇编

    A 压缩机能将电机或内燃机的机械能转化为压缩空气的压力。空气压缩机分为两大类:往复式与旋转式。下图表示了压缩机的基本类型:
    往复式压缩机
           单级活塞压缩机 :只由一个过程就将吸入的大气压空气压缩到所需要的压力。 活塞下移,体积增加,缸内压力小于大气压,空气便从进气阀门进入缸内。 在冲程未端,活塞向上运动,进气阀门被打开,输出空气进入储气罐。 这种型式的压缩机通常用于需要3-7巴碰运气范围的系统。
           两级活塞式压缩机 :在单级压缩机中,若空气压力超过6巴,产生的过热将大大地降低压缩机的效率。因此,工业中使用的活塞式压缩机通常是两级的。 由两面三刀个阶段将吸入的大气压空气压缩到最终的压力。 如果最终压力为7巴,第一级通常将它压缩到3巴,然后被冷却,再输送到第二级气缸中压缩到7巴。 压缩空气通过中间冷却器后温度大大下降,再进入第二级气缸。因此,相对于单级压缩机提高了效率。最后输出的温度可能在120°C左右。
           膜片式压缩机 :膜片式压缩能提供5巴的压缩空气。由于它完全没有油,因此广泛用于仪器医药和相类似的工业中。 膜片使气室容积发生变化,在下行程时吸进空气,上行程时压缩空气。
    旋转式压缩机
     
           两个啮合的螺旋转子以相反方向运动,它们当中自由空间的容积沿轴向减少,从而压缩两转子间的空气。 利用喷油来润滑和密封两旋转的螺杆,油分离器将油与输出空气分开。 此类压缩机可连续输出流量超过400M³/MIN,压力高达10巴。 和叶片式压缩机相比,此类压缩机能输送出连续的无脉动的压缩空气。 虽然螺杆式和叶片式压缩机愈来愈受到青睐,但工业上最普遍使用的仍然是往复式压缩机。
           涡旋式压缩机 :涡旋式压缩机是20世纪90年代末期开发并问世的高科技压缩机,由于结构简单、零件少、效率高、可靠性好,尤其是其低噪声、长寿命等诸方面大大优于其它型式的压缩机,已经得到压缩机行业的关注和公认。被誉为“环保型压缩机”。 由于涡旋式压缩机的独特设计,使其成为当今世界最节能压缩机。由于涡旋式压缩机主要运动件涡卷付,只有磨合没有磨损,因而寿命更长,被誉为免维修压缩机。 由于涡旋式压缩机运行平稳、振动小、工作环境安静,又被誉为“超静压缩机”。 涡旋式压缩机零部件少,只有四个运行部件压缩机工作腔由相运动涡卷付形成多个相互封闭的镰形工作腔,当动涡卷作平动运动时,使镰形工作腔由大变小而达到压缩和排出压缩空气的目的。
     
    压缩机的特性参数
           压缩机的容量或输出量用标准容积流量来表示,单位为m³/S, Mn³/min, DMn³/S, 或L/min。容量也可用排量或“理论输入量”来表示,对活塞式压缩机来说:
           Q(L/MIN)=活塞面积(dm²)X 行程(dm)X 第一级气负缸数 X 转速(rpm)
           对于两级压缩机,仅考虑其第一级气缸。由于容积和热量损失,输出量通常比输入量为少。 在压缩过程末端,不可能将所有的压缩空气排出,因此容积损失是难免的。压缩后还留有一定的空间,称之为“死容积”。 热量损失是由于压缩过程中温度很高,因此容积增大,当冷却至室温时,其容积又减少。(见第三章中查理定律)。
           容积效率 :比值自由空气输出量/排气量 用百分数表示时,叫做容积效率,它随尺寸大小,型号和压缩机的加工,级数和最终的压力变化而变化。二级压缩机的容积效率小于一级,因为第一、二级气缸之间有“死容积”。
           热效率及总效率 :除了上述损失外,热量的影响也使压缩空气的效率降低。这些损失使总效率进一步减少,减少的程度取决于压缩比和负荷。满量工作的压缩机积聚了大量的热量从而降低了效率。在两面三刀级压缩机中,压缩比逐渐减小,部分在第一级中被压缩的空气在第二级气缸被压至最终压力前,经过中间冷却器冷却。
           例如,如果第一级气缸吸入的在气衩压缩至它体积的三分之一,那么在输出处它的绝对压力将达3巴,相对来说,由于压缩比小因而产生的热量相应较低,压缩空气通过中间冷却器后输入第二级气缸,然后又衩压缩到它体积的三分之一,于是最终压力为9巴(ABS)。 在一级压缩机中将空气从大气压直接压缩到9巴(ABS)所产生的热量比二级压缩机要多得多,总效率也将大大下降。 对于较低的最终压力单级压缩,因其纯容积效率较高。然而,随着最终压力的逐渐啬,热量损失变得愈来愈重要,具有较高热效率的二级压缩机的优越性就体现出来了。 “单位能量消耗”是衡量总效率的指标,并且能用于估计制造压缩空气的需的费用,平均的,1Kw电能产生120-150l/min(=0.12-0.15M²n/min/kw)工作压力为7巴的压缩空气。
     
    压缩机的辅件
           储气罐 :储气罐是钢板焊接制成的压力容器,水平或垂直地直接安装在后冷却器后面来储存压缩空气,因此,可以减少空气流的脉动。 它的重要功能是贮备足够的空气来满足超出压缩机容量的要求,尽可能减少压缩机常发生的“满载”与“空载”现象,它在进一步分配空气前再补充和凝结从后冷却器中出来的油和水份,因此,最好将储气罐放在阴凉处。 这种容器应该装上安全阀、压力表、排水阀以及便于检查和清洁其内部的人孔盖。 储气罐的尺寸大小根据压缩机的输出量,系统的尺寸大小根据压缩机的输出量,系统的尺寸大小以需求量是桓定的还是变化的来确定。 工业里供给一个网络使用的电力驱动压缩机,通常在最小压力和最大压力之间切换,这种控制称为“自动控制”。这就需要相当于的最小储气罐容积避免这种频繁的切换。 由内燃机驱动的流动压缩机将空气压到最大压力后也不停止,但吸气瘩上升以便空气自由地进入气缸而不被压缩,压缩和空载运动之间压力差很小,这时仅需较小储气罐。
    对工厂来说,计算储气罐尺寸的原则是:
           储气罐容量=压缩机每分钟压缩空气的输出量(不是F.A.D)!( FREE. AIR DELIVER)。
           例如,压缩机输出18mn³/min的流量(自由空气),平均压力为7巴,因此压缩空气每分钟输出量为18000/7约等于2500l,即容积为2750l的储气罐是合适的。
           入口过滤器 :典型的城市空气含有4000万单位/M³的固体颗粒,即灰尘、油泥、花粉等。如果这种空气被压缩到7巴,那么浓度将达到3.2亿单位/m³。压缩机工作可靠的一个重要条件是必须提供合适且有效的过滤器,以免气缸和活塞环过量损耗,这种损耗主要是由于这样不纯物质的磨擦而引起的。 过滤器不需太细密,因为压缩机的效率随空气阻力的增加而减少。因此,细小的颗粒(2-5µ)不能滤掉。 吸气口应设置和尽可能远,干净干燥的空气向上流动,进气管的直径足够大以避免过大的压力。当应用消声器时,过滤器应放在它的上端以尽可能减小空气流的脉动。
  • Q 关于空分循环冷却水操作压力的问题

    A 正常空分设备设计循环水工程条件如下:

           循环水上水温度: ≤30ºC

           循环水回水温度: ≤40 ºC

           供水压力: 0.3 MPa

           回水压力: 0.15 MPa

    目前对于小型空分,需要用到冷却水的设备有冷气机组、空压机和氧氮压机等。在运行过程中关于冷却水压力偏低的问题主要有以下两个方面:

    1、循环水供水压力偏低

           如果循环水供水压力偏低,就会造成换热循环水量不足,换热器换热效率降低。对整个空分系统就会造成影响。如果从设备开始运行就出现供水压力偏低的问题,就有可能是设计循环水泵供水量偏小,满足不了空分设备用水量。需要更换合适水量的循环水泵。如果是运行一段时间以后供水压力逐渐降低的,就要检查循环水泵的问题了,检查一下看泵吸入口有没有堵塞,泵自身运转是否正常等。

    2、循环水回水压力偏低

           如果是循环水供水压力正常的情况下,回水压力偏低,也有两种个方面。如果开始运行压力就偏低,就要考虑换热器阻力过大,换热器设计结构不合理,或者水管路设计过小。如果试运行一段时间后,回水压力逐渐降低,很有可能是换热器冷却水通道结构严重或杂物堵塞,需要停机进行疏通或除垢。
  • Q 分子筛知识概述

    A
    一、分子筛的品种型号
     
           分子筛(又称合成沸石)是一种硅铝酸盐多微孔晶体,它是由SiO和AIO四面体组成和框架结构。在分子筛晶格中存在金属阳离子(如Na,K,Ca等),以平衡四面体中多余的负电荷。分子筛的类型按其晶体结构主要分为:A型,X型,Y型等
    A型
           主要成分是硅铝酸盐,孔径为4A(1A=10 -10 米),称为4A(又称纳A型)分子筛;用Ca2+交换4A分子筛中的Na+,形成5A的孔径,即为5A(又称钙A型)分子筛;用K+交换4A分子筛的Na+,形成3A的孔径,即为3A(又称钾A型)分子筛。
    X型
           硅铝酸盐的晶体结构不同(硅铝比大小不一样),形成孔径为9—10A的分子筛晶体,称为13X(又称钠X型)分子筛;用Ca2+交换13X分子筛中的Na+,形成孔径为9A的分子筛晶体,称为10X(又称钙X型)分子筛
    Y型
           Y型分子筛具有X型分子筛烃似的晶体结构,但化学组成不同(硅铝比较大)通常用于催化领域。
    二、 分子筛的主要特性
     
    1、物理特性:
           比热:约0.95KJ/KgXK(0.23Kcal/KgX℃
           导热系数(脱水物):2.09KJ/MXK(0.506Kcal/mX℃
           水吸附热:约3780KJ/Kg(915Kcal/Kg)
    2、热稳定性和化学稳定性:
     
           分子筛能承受600—700℃ 的短暂高温,但再生温度一般在400℃ 以下。分子筛可在PH值5-10范围的介质中使用;在盐溶液中能交换某些金属阳离子。
    3、分子筛的特性
     
           分子筛是一类结晶的硅铝酸盐,由于它具有均一的孔径和极高的比表面积,所以具有许多优异的特点。(1)按分子的大小和形状不同的选择吸附作用,即只吸附那些小于分子筛孔径的分子。(2)对于小的极性分子和不饱和分子,具有选择吸附性能,极性越大,不饱和度越高,其选择吸附性越强。(3)具有强烈的吸水性。哪怕在较高的温度、较大的空速和含水量较低的情况下,仍有相当高的吸水容量。
     
    3.1、基本特性:
    a)分子筛对水或各种气,液态化合物可逆吸附及脱附。
    b)金属阳离子易被交换。
    c)分子筛内部空腔和通道形成非常高的内表面积。其内表面可高于分子筛颗粒的外表面积的10000-100000倍。
     
    1、根据分子大小和形状的不同选择吸附——分子筛效应
     
           分子筛晶体具有蜂窝状的结构,晶体内的晶穴和孔道相互沟通,并且孔径大小均匀,固定(分子筛空腔直径一般在6—15埃之间),与通常分子的大小相当,只有那些直径比较小的分子才能通过沸石孔道被分子筛吸附,而构型庞大的分子由于不能进入沸石孔道,则不被分子筛吸附。而硅胶,活性氧化铝和活性碳没有均匀的孔径,孔径分布范围十分宽广,所以没有筛分性能。
    2、根据分子极性,不饱和度和极化率的选择吸附
     
           分子筛对于极性分子和不饱和分子有很高的亲和力;在非极性分子中,对于极化率在的分子有较高的选择吸附优势。此外,沸点越低的分子,越不易被分子筛所吸附。
     
    3.2、分子筛的高效吸附特性:
     
           分子筛对于H2O、NH3、H2S、CO2 等高分子极性具有很高的亲和力,特别是对于水,在低分压(甚至在133帕以下)或低浓度,高温(甚至在100℃ 以上)等十分苛刻的条件下仍有很高的吸附容量。
    1、低分压或低浓度下的吸附
           在相对湿度30% 时分子筛的吸水量比硅胶,活性氧化铝都高。随着相对湿度的降低,分子筛的优越性越发显著,而硅胶,活性氧化铝随着湿度的增加,吸附量不断增加,在相对湿度很低时,它们的吸附量很少。
    2、高温吸附
     
           分子筛是唯一可用的高温吸附剂。在100 ℃和1.3 %相对湿度时分子筛可吸附15%重量的水分,比相同条件下活性氧化铝的吸水量大10倍;而比硅胶大20倍以上。所以在较高的温度下,分子筛仍能吸附相当数量的水分,而活性氧化铝,特别是硅胶,大大丧失了吸附能力。
    3、高速吸附
     
           分子筛对像水等极性分子在分压或浓度很低时的吸附速率要远远超过硅胶,活性氧化铝。虽然在相对湿度很高时,硅胶的平衡吸水量要高于分子筛,但随着吸附质的线速度的提高,硅胶的吸水率越来越不如分子筛效率高。
    3.3、分子筛的离子交换性
           分子筛的一个重要性能是可以进行可逆的离子交换。通过这种交换,改进了分子筛的吸附和催化性能,从而获得了广泛的应用(如可用于软化水和废水处理)。
    3.4、分子筛的催化性能
           分子筛晶体具有均匀的孔结构,孔径的大小与通常分子相当;它们具有很大的表面积。而且表面极性很高;平衡骨架负电荷的阳离子,可进行离子交换;一些具有催化活性的金属也可以交换导入晶体,然后以极高的分散度还原为元素状态;同时分子筛骨架结构的稳定性很高。这些结构性质,使分子筛不仅成为优良的吸附剂,而且成为有效的催化剂和催化剂载体。
     
    四、分子筛的主要技术指标及应用范围
     
           沸石分子筛是一类由硅氧四面体和铝氧四面体通过共用氧原子相互连接成骨架结构、并具有均匀晶内孔道的晶态微孔材料。通常,天然的和人工合成的沸石分子筛指的是硅铝酸盐。
           沸石分子筛不仅可应用于催化、吸附、分离等过程,还可用于微激光器、非线性光学材料及纳米器件等新兴领域,并在药物化学、精细化工和石油化工等领域有着广阔的应用前景。
     
    分子筛主要应用品种有3A、4A、5A、13X以及以上述为基质的改性产品。
           3A分子筛用途:各种液体(如乙醇)的干燥;空气的干燥;制冷剂的干燥;天然气、甲烷气的干燥;不饱和烃和裂解气、乙烯、乙炔、丙烯、丁二烯的干燥。
           4A分子筛用途:空气、天然气、烷烃、制冷剂等气体和液体的深度干燥;氩气的制取和净化;药品包装、电子元件和易变质物质的静态干燥;油漆、燃料、涂料中作为脱水剂。
           5A分子筛用途:变压吸附;空气净化脱水和二氧化碳。
           13X分子筛用途:空气分离装置中气体净化,脱除水和二氧化碳;天然气、液化石油气、液态烃的干燥和脱硫;一般气体深度干燥。
           改性分子筛可用于有机反应的催化剂和吸附剂。
           加工工艺:利用现有的硅铝酸盐矿石或煤矸石等原料,经过粉碎、成型(可造粒或挤条)、高温烧结、用氢氧化钠、氢氧化钾或氯化钙等无机物水溶液在一定温度下浸泡一定时间、然后洗涤、压滤、粉碎、成型、养生、干燥、活化工艺加工而成。
     
           颗粒度(mm,% ):分子筛的外观指标,颗粒度范围控制在:上,下限之间大于95% ;上,下限及上限加下限均不行超过5% 。
           静态水吸附( mg/g):分子筛的主要指标。静态水吸附量的多少,基本上体现了该分子筛的品质。静态水吸附的范围一般在200-265mg/g 之间。
           吸附特定介质量(mg/g ):分子筛的主要指标。不同的分子筛都要按其主要用途和其标准孔径,由一种特定的介质来进行检测,检测的结果,将直观表明该分子筛的品质的优劣。
           抗压强度(N/颗):分子筛的主要指标。由于使用分子筛的工况条件大多是压力差较大(特别是吸附与再生切换时),如果分子筛的抗压强度不符合要求,极易造成分子筛的破损,除影响分子筛的使用寿命外,还可能使设备管道堵塞造成严重后果。抗压强度与吸附容量基本上呈反比关系。如何在保证吸附容量的基础上提高抗压强度,也是提高分子筛质量的关键。
           堆积密度(g/ml ):分子筛的主要指标。堆积密度与抗压强度基本上呈正比关系,在吸附容量不变的情况下,堆积密度越大越好。
           磨损率(% ):分子筛的外观指标。磨损率越低,分子筛的粉尘就越少,在使用中的不良情况越少,分子筛的品质就好。
           包装含水量(% ):包装含水量越小,表明分子筛在储存和运输过程中的预吸附越少,对用户来讲,除了省却不必要的再生处理外,它的价值更大。
  • Q 空分装置吹扫加温过程注意事项

    A 空分设备能否开成顺利,吹扫加温过程至关重要,下面针对吹扫过程提出几点注意事项:

    1、吹扫的顺序:先塔外后塔内;先碳钢管后铝管;先粗管后细管。
    2、吹扫的气量、压力是正常操作的60%。
    3、注意仪表管、分析管、不凝气排放管的吹扫。
    4、节流阀开度在70%为宜。
    5、准备好一张工艺流程图和彩笔,吹扫干净一条管道在流程图上面做一个标记
    6、结束时查看露点
    7、用白色湿布检查各出口是否干净、注意吹扫阀门的开关顺序和人身安全
    8、塔外管道一边吹扫一边专人敲击,使管道内杂质吹净
锦华信息
快速导航
联系我们
邮箱:info@hzjhkf.com
电话:0571-85358587;
0570-7788189
地址:浙江省衢州市龙游县浙江龙游经济开发区北斗大道73号
社交网站